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Overview

The purpose of this note is to explain the details of the computation of the deterministic transition

dynamics of the Aiyagari (1994) model after an unexpected permanent shock. Such unforeseen

aggregate shocks are called “MIT shocks”. As an example, I assume the shock is a change in

borrowing constraint. In particular, borrowing constraint increases from ϕ to ϕ′.

• When MIT shocks hit the economy, we can compute the stationary equilibria before and

after the shock. Then we can make comparison between the two steady state. However this

approach can only assess the starting point and the end point. What happens in between

remains unclear. Hence we need to compute the whole transition: the shock will change the

household consumption/saving and possibly labor supply decision (if there is endogenous labor

supply), hence aggregate prices, and will induce dynamics away from the current stationary

equilibrium towards the new one.

• The transition is characterized by a sequence of aggregate prices and quantities. Notice that

prices (r, w) are time-varying during transition.

• The transition dynamics induced by MIT shocks are deterministic. Since we know the exact

new value for e.g. borrowing constraint, we know there will be a deterministic path for prices

and for the distribution of household type µ. Therefore, we do not need to keep track of the

distribution as an additional state, as time is a sufficient statistic. When there is aggregate

uncertainty (e.g. Krusell and Smith, 1998), the distribution µ becomes an aggregate state.
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1 Computation Algorithm

1. Compute the initial steady state (ϕ) and the final steady state (ϕ′). Set the initial steady state

as t = 0 steady state. And the final steady state as t = T steady state. Hence there are T − 1

periods during the transition.

2. Choose a time T at which point we assume the economy has reached the new steady state.

t = 1 is the period when the unexpected change in ϕ happened, and t = T is sufficiently far in

future so that we can safely assume that by time T the economy is in the new steady state.

3. Guess a path for aggregate capital
(
{Kt}T−1

t=1

)0

.

4. Given
(
{Kt}T−1

t=1

)0

, solve for sequences of prices, {rt}T−1
t=1 and {wt}T−1

t=1 , using firm FOCs.

Notice that the aggregate labor supply can be computed exogenously in the stationary equi-

librium. If we store the stationary distribution regarding the idiosyncratic shocks as {Pi}ni=1,

the aggregate labor supply in the stationary distribution can be computed as

N =

n∑
i=1

siPi

Hence r and w are functions of K.

5. Backward Induction:

Assume that at t = T , the economy is in the new steady state. Since we already computed the

new steady state in Step-1, we know the value function in the last period t = T . That means

we know V (kT , sT ) in t = T − 1 Bellman equation

V (kT−1, sT−1) = maxcT−1,kT

{
u(c) + β

∑
s′

π(s′|s)V (kT , sT )
}

Hence we can solve the value function in period t = T − 1. Similarly, given V (kT−1, sT−1), we

can solve value function in period T − 2.

In summary, in this step, we solve the value function backwards from t = T − 1, ..., 1, setting

VT = Vssnew
. Hence we obtain a sequence of value functions {Vt}T−1

t=1

6. Forward Calculation:

t = 1 is the period when the unexpected change in ϕ happened. Hence in t = 0, the economy

is still in its initial steady state. Since we already computed the initial steady state in Step-1,

we know the policy function k′ and distribution µ in period t = 0.
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(a) Using law of motion for µ, compute µ in period t = 1

µ(k1, s1) =
∑
k0

∑
s0

µ(k0, s0)π(s1|s0)1k1=g(k0,s0)

(b) Given the sequence of rt and wt, we know r and w in period t = 1. Given the sequence of

value functions, we know value function in period t = 2. Using Bellman equation, solve

the policy function in period t = 1, which is k1.

(c) With distribution µ1 and policy function k1, compute the aggregate capital supply Ks
1

(d) Define the excess capital demand K1 −Ks
1 .

(e) Ks
1 is computed using policy function gk(k, s) and stationary distribution µ0, which are

computed given prices. And since the prices are functions of aggregate capital K1, hence

Ks
1 depends on K1. Therefore, Φ = K1 −Ks

1 is a function of K1. Then use ‘fsolve’ to get

the the solution for K∗
1

(f) Keep doing this for each following period until t = T − 1. We get a sequence of {K∗
t }T−1

t=1

7. Compute the maximum difference between {K∗
t }T−1

t=1 and our guess
(
{Kt}T−1

t=1

)0

8. If the difference is below tolerance level, stop.

9. Otherwise, update guess

(
{Kt}T−1

t=1

)1

= ν
(
{Kt}T−1

t=1

)0

+ (1− ν){K∗
t }T−1

t=1 , ν ∈ (0, 1)

and go to Step-2
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A summary of the functions I used to compute the transition dynamics
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Appendix: Another Way to Compute Transition Dynamics

1. Choose a time T at which point we assume the economy has reached new steady state.

2. Guess a path for aggregate capital demand
(
{Kt}T−1

t=1

)0

.

3. Given
(
{Kt}T−1

t=1

)0

, solve for sequences of prices, {rt}T−1
t=1 and {wt}T−1

t=1 , using firm FOCs.

4. Solve the value function and policy function backwards from t = T − 1, ..., 1, setting VT =

Vssnew
.

5. Starting from the initial steady state distribution, simulate the distribution forward from

t = 1, ...T − 1 using the policy function and idiosyncratic productivity Markov transition

matrix.

6. At each t, compute aggregate capital supplied Ks
t using distribution and policy functions.

7. Compute the maximum difference between supply and demand ξ = max|Kt −Ks
t |

8. If ξ <tolerance level, stop.

9. Otherwise, update guess

(
{Kt}T−1

t=1

)1

= ν
(
{Kt}T−1

t=1

)0

+ (1− ν){Ks
t }T−1

t=1 , ν ∈ (0, 1)

and go to Step-2
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